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Optical properties of excitons in strained Gax In1−x

As/GaAs quantum dot: effect of geometrical confinement
on exciton g-factor
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Taking into account anisotropy, nonparabolicity of the conduction band, and geometrical confinement, we
discuss the heavy-hole excitonic states in a strained GaxIn1−xAs/GaAs quantum dot for various Ga alloy
contents. The strained quantum dot is considered as a spherical InAs dot surrounded by a GaAs barrier
material. The dependence of the effective excitonic g-factor as a function of dot radius and Ga ion content
is numerically measured. Interband optical energy with and without the parabolic effect is computed using
structural confinement. The interband matrix element for different Ga concentrations is also calculated.
The oscillator strength of interband transitions on the dot radius is studied at different Ga concentrations in
the GaxIn1−xAs/GaAs quantum dot. Heavy-hole excitonic absorption spectra are recorded for various Ga
alloy contents in the GaxIn1−xAs/GaAs quantum dot. Results show that oscillator strength diminishes
when dot size decreases because of the dominance of the quantum size effect. Furthermore, exchange
enhancement and exchange splitting increase as exciton confinement increases.
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Technological progress in the techniques for growing low-
dimensional semiconductor crystals has enabled the cus-
tomization of semiconductor structures toward desired
dimensions for specific applications. These techniques
include molecular beam epitaxy, metal organic chemi-
cal vapor deposition, and electron lithography, which en-
able the confinement of carriers in one, two, or three
dimensions (1D, 2D, or 3D). Because of the reduction in
dimensionality of carrier motion, low-dimensional semi-
conductor systems exhibit unusual properties that can
be easily accessible to experimental studies and that lend
themselves to theoretical interpretation. Quantum dots,
referred to as artificial atoms, are characterized by elec-
tron states that take the form of discrete energy levels.

The majority of research has thus far focused on the
electronic and optical properties of strained heterostruc-
tures under a strain percentage of around 1%. Con-
versely, studies on experimental data for InAs/GaAs
heterostructures that exhibit a lattice mismatch of ap-
proximately 7% are scarce. Extensively investigating
these highly strained materials is of great interest be-
cause of the large splitting between the hh and lh lower
bands; such splitting considerably modifies valence band
structure. Despite the promising prospects presented
by these materials, however, their wide usage is con-
strained by the limited composition of barrier materi-
als. This composition is responsible for the tunabil-
ity of the optical band gap of highly strained mate-
rials. Doped InAs semiconducting materials present
tremendous advantages in spintronic applications be-
cause of their large g-factor, high-mobility charge carri-
ers, and large spin-orbit interaction[1−3]. The electronic,

optical, and magnetic properties of the active regions
used for high-performance long-wavelength lasers based
on InGaAs semiconducting materials are interesting be-
cause low-dimensional InGaAs semiconductors are used
on GaAs substrates to develop lasers that range from 1
200 to 1 500 nm. Low-dimensional InGaAs semiconduc-
tors are ideal materials given their tremendous tempera-
ture stability, high performance, broad high-modulation
bandwidths, and low-threshold long wavelengths[4−12].
Moreover, such materials are the preferred light source
for wideband optical communications, especially long-
term telecommunications applications[4−12]. Zhang et

al.[13] recently studied the high pulse repetition rates
(greater than 10 GHz) of diode-pumped solid-state lasers,
which were mode locked using semiconductor saturable
absorber mirrors in 1.55-µm InAs/GaAs quantum dots.
These quantum dots are extensively applied in laser
diodes, optical communications, optical amplifiers, and
nonlinear and photonic devices.

Preisler et al.[14] conducted photoluminescence exci-
tation spectroscopy under a strong magnetic field to
investigate the interband transitions in several ensem-
bles of self-assembled InAs/GaAs quantum dots. The
authors determined the excitonic polaron energies and
oscillator strengths of interband transitions. Snelling
et al.[15] studied the Zeeman splitting of the heavy-
hole excitons confined in GaAs quantum wells, and
other scholars interpreted heavy-hole magneto excitons
through the electron-hole exchange interaction induced
by confinement[16]. By contrast, the enhancement of
the electron-hole exchange interaction induced by 2D
confinement is rarely investigated[17].
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The p-like states in the valence band of InAs semi-
conductors are strongly coupled to the spin of such
valence band; ultimately, total angular momentum is
modified, thereby drastically altering the electron g-
factor that measures the Zeeman splitting of electron
states in the presence of a magnetic field[18]. Sarkar et

al.[19] conducted a photoluminescence study of the biex-
citon binding energy and fine-structure splitting in sin-
gle InAs/AlAs quantum dots. The authors found that
binding energy and splitting monotonically decreased
as quantum dot emission energy increased. Stranski–
Krastanov dots were initially suggested as pyramidal[20],
prompting several groups to theoretically investigate the
structure of ideal pyramidal dots[21−23]. A theoretical
analysis of the mean electron and hole positions in self-
assembled InAs-GaAs quantum dot structures has been
presented, in which the plane-wave envelope-function
technique was used to determine the electronic structures
and the measured Stark effect in the structures; these
features cannot be explained by assuming a pyramidal
dot shape[24]. Using an eight-band strain-dependent k.p
Hamiltonian, Pryor[25] calculated the electronic struc-
ture of pyramidal-shaped InAs/GaAs quantum dots. The
electro-refraction in strained InAs/GaAs and InAs/InP
quantum dots has been discussed using a numerical
model based on the 4×4 Luttinger-Kohn Hamiltonian
theoretically proposed by Prasanth[26], who performed
matrix diagonalization with plane-wave basis states and
experiments[27].

In this letter, we discuss the heavy-hole excitonic states
in a strained GaxIn1−xAs/GaAs quantum dot at var-
ious Ga alloy concentrations. The calculations per-
formed are those on anisotropy, the nonparabolicity of
the conduction band, and geometrical confinement. The
strained quantum dot is considered a spherical InAs dot
surrounded by a GaAs barrier material. The exciton
effective Lande factor is measured as a function of dot
radius and Ga alloy content in the GaxIn1−xAs/GaAs
quantum dot. Interband emission energy is computed us-
ing structural confinement, and the interband matrix el-
ement for different Ga concentrations is calculated. The
oscillator strength of interband transitions on the dot ra-
dius of the InAs/GaAs quantum dot is investigated, and
heavy-hole excitonic absorption spectra for various Ga al-
loy contents in the GaxIn1−xAs/GaAs quantum dot are
recorded.

We consider an exciton in a GaxIn1−xAs quantum dot
surrounded by a spherical potential barrier with GaAs
material. We assume a uniform strain in the quantum dot
with the general complex of large 3D spatial variations,
as in Ref. [28]. The potential inside the dot is assumed
to be 0 and that outside is assumed to be V0. On the
basis of the approximation of single-band effective mass,
the Hamiltonian of the electron-hole pair in the spherical
quantum dot of GaxIn1−xAs/GaAs can be written as

Ĥexc =
∑

j=e,h

(
~p2

j

2m∗

j(i)

+ V j

)
− e2

ε |r̄e − r̄h|
, (1)

where j = e, h refer to the electron and hole, respec-
tively; m∗

j(i) is the effective mass of the electron (hole),

with i referring to the mass of the inner and outer ma-
terials; ε is the dielectric constant of the material in the

quantum dot; e represents the absolute electron charge;
and |r̄e − r̄h| denotes the relative distance between the
electron and hole. The strain effects induce an extra po-
tential field, Vstrain, which we regard as the problem in
this letter. For the nanostructure of the strained quan-
tum dot, the confinement potential is considered the sum
of the energy offsets of the conduction band (or valence
band) and the strain-induced potential in all our calcu-
lations.

The electron (hole) confinement potential (V j
conf) re-

sulting from the band offset in the GaxIn1−xAs/GaAs
quantum dot structure is given by

V
j
conf =

{
0 rj 6 R

V0 rj > R
, (2)

where V0 represents the barrier height. For x =0.2, the
barrier heights of the conduction and valence bands are
288 and 192 meV, respectively. The parameter that in-
dicates the offset between the conduction and valence
bands is 60:40[29]. The band gap difference between the
quantum dot and barrier at Γ -point is given by

∆EΓ

g (x) = 0.359 + 0.491x+ 0.58x2. (3)

For any low-dimensional semiconductor system, conduc-
tion and valence edge energies are affected primarily by
strain contribution, which is introduced in the Hamil-
tonian through band offset values. Hydrostatic strain
influences lattice volume, causing changes in the energy
levels of materials. Meanwhile, uniaxial strain causes lat-
tice constant mismatch between two materials.

The strain-induced potential of the conduction band
can be expressed as[30]

Ve−strian = ac(εxx + εyy + εzz), (4)

where ac is the deformation potential constant of the con-
duction band. The strain tensor components are defined
as εxx = εyy = a0−a

a
, where a0 and a are the lattice

parameters of bulk InAs and GaAs, respectively, and
εzz = −2C12

C11

εxx, where Cij represents the elastic stiffness
constants, whose values are given in Table 1.

The strain-induced potential of the valence band can
be written as[31]

Vv−strain = av(εxx +εyy +εzz)−
b

2
(εxx +εyy−2εzz), (5)

where av and b are the deformation potential constants
of the valence band for the hydrostatic components of the
strain along 〈001〉.

Internal strain influences electronic parameters and the
effective Lande factor. The effective g-factor (which de-
pends on Ga alloy content) of the electron (hole) with an
energy Ec(Ev) measured from the bottom (top) of the
conduction (valence) band is provided thus[32]

g(E, x) = 2 − 2Ep(x)∆(x)

3(Eg(x) + E)(Eg(x) + E + ∆(x))
, (6)

where Eg(x) is the Ga-dependent fundamental band gap
energy, ∆(x) is the spin-orbit splitting energy, and EP

describes the coupling energy between conduction band
Γ6 and valence bands Γ7 and Γ8. The corresponding val-
ues are shown in Table 1.
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The heavy-hole mass that corresponds to the curvature
of the heavy-hole band around Γ is given by

m0

m∗

hh

= γ1 − 2γ2, (7)

where m0 is the free electron mass, and γ1 and γ2 are the
Luttinger parameters. The effect of band nonparabolic-
ity is used in our calculations, with the energy-dependent
electron mass given as

m∗

NP = m∗

e(1 + αE), (8)

where α is the material-dependent nonparabolicity pa-
rameter (0.0025 meV−1)[33] and E is the lowest energy of
the electron (hole), obtained by solving the single-particle
Schrödinger equation using the electron (hole) bulk mass.

A variational approach is adopted to calculate the bind-
ing energy of the 1S state of an exciton as a function
of dot radius. The energy levels, wave functions of the
bound electron and hole states, and interband emission
energy are calculated following Ref. [34]. Thus, exci-
ton binding energy and optical transition energy can be
expressed as

Eexc(x) = Ee + Eh − 〈Hexc〉min , (9)

Eph(x) = Ee(x) + Eh(x) + EΓ
g (x) − Eexc(x), (10)

where Ee and Eh represent the sum of the lowest binding
energy of the electron and hole obtained by self-consistent
calculation, respectively; and EΓ

g (x) is the band gap of
the inner dot material. Envelope wave functions and exci-
ton binding energies are considered significant factors in
calculating oscillator strength; such calculation is crucial
to understanding the absorption spectra recorded during
experimentation[35].

Oscillator strength is expressed as

f =
Ep

Eexc

∣∣∣
∫

V

ψexc(r)dr
∣∣∣
2

, (11)

where Eexc is the exciton binding energy, Ep is the Kane
energy of InAs, and ψexc denotes the exciton wave func-
tion. Oscillator strength increases with dot radius. Ra-
diative lifetime can be calculated thus[36]

τ =
2πε0m0c

3h2

√
εe2E2

excf
, (12)

where f is the oscillator strength provided by Eq. (11).
All the other parameters are universal physical constants.

Oscillator strength and radiative lifetime are two im-
portant optical parameters in calculating different lin-
ear and nonlinear optical properties. An essential re-
quirement is that the dipole transition that occurs be-
tween two energy levels must obey selection rules, such
as ∆l = ±1, where l is the quantum number of angular
momentum. The oscillator strength pertaining to dipole
transition is expressed as

Pfi =
2m∗
~2

∆Efi |Mfi|2 , (13)

where ∆Efi is obtained by determining the difference in
energy between lower (Ei) and upper (Ef ) states. Matrix

element Mfi = 2 〈f |er| i〉 is computed from the electric
dipole moment of the transition from the i state to the
f state in any low-dimensional semiconductor system.
Using the compact matrix approach and Fermi’s golden
rule, we express total optical absorption as[37]

α(ω, I) = α1(ω) + α3(ω, I)

=ω

√
µ0

εr
Im [ε0χ1(ω) + ε0χ3(ω)I] , (14)

where µ0, I, and εr are the permeability of the mate-
rial, the incident light intensity of the electromagnetic
field, and the real component of permittivity, respec-
tively. The linear and third-order nonlinear optical ab-
sorption coefficients of a quantum dot can be obtained
by a density matrix approach, with corresponding ex-
pressions given by

α1(ω) =
4παfσs

nre2
~ω |Mfi|2 δ(Ef − Ei − ~ω). (15)

Meanwhile, the nonlinear optical absorption coefficient
is given as

α3(ω, I) = − 32π2αfσsI

n2
re

2~Γff
~ω |Mfi|2 δ(Ef − Ei − ~ω)

·
{
1 − |Mff −Mii|2

4|Mfi|2

× [(~ω − Efi)
2 − (~Γfi)

2 + 2Efi(Efi − ~ω)]

E2
fi + (~Γfi)2

}
,

(16)

where nr is the refractive index of the material examined
in this research, σs is the electron density of the quantum
dot, ω denotes the angular frequency of incident photon
energy, αf represents the fine structure constant, and Ei

and Ef are the confinement energy levels of the ground
and first excitation state, respectively. The calculations
of excited state energies are adopted from Ref. [38].

On the basis of Eqs. (15) and (16), the energy
-conserving delta function approximated by the
Lorentzian is given by

δ(Ef − Ei − ~ω) =
Γ

π {(Ef − Ei − ~ω)2 + Γ 2} , (17)

where Γ is the line width of the exciton in which Γ=0.1
meV is considered. The homogeneous spectral width
resulting from the finite time of coherence between the
two energy levels is also taken into account in the calcu-
lations.

The exciton binding energy in a spherical
GaxIn1−xAs/GaAs strained quantum dot is numerically
calculated using heavy-hole mass because heavy excitons
are commonly subjected to experimental investigations.
The effect of geometrical confinement is calculated using
a finite quantum dot model, in which confinement po-
tential is determined by band offsets and strain effects.
We assume a spherical InAs quantum dot embedded in
a GaAs material. The variations in the composition x
of the quantum dot material modify energy gap. All the
material parameters are provided in Table 1. Atomic
units are used to determine electronic charges and wave
functions; here, we assume that electronic charges and
the Planck’s constant are unity.
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Table 1. Material Parameters* Used in Calculations
(All Other Parameters are Linearly Interpolated)

Parameter InAs GaAs Unit

Eg 0.418 1.517 eV

me 0.023 0.067 (m0)

ε 15.15 13.13

γ1 20 6.98

γ2 8.5 2.06

C11 83.29 11.88 GPa

C12 45.26 5.38 GPa

C44 23.0 5.94 GPa

ac –5.08 –7.17 eV

av 1 –1.16 eV

b –1.8 2 eV

a 0.6058 0.565 nm

*parameters taken from Refs. [54–59].

Figure 1 shows the variations in the binding energy of
a heavy-hole exciton of the strained GaxIn1−xAs/GaAs
quantum dot as a function of dot radius for various Ga
contents. The inset shows the schematic of the model
used in the calculation. As shown in Fig. 2, binding
energy decreases as dot radius increases for all Ga con-
tents, a finding attributed to the increase in relative
distance between the electron and hole, as well as to
the reduction in Coulomb interaction. Conversely, exci-
ton binding energy improves with decreasing dot radius.
However, binding energy decreases at small dot sizes
because geometrical confinement is governed for smaller
dot radii, causing the exciton to become unbound. This
finding indicates that quantum dot size has a dominant
effect[39,40]. Furthermore, exciton binding energy in-
creases as Ga content increases because the increase in
Ga concentration enhances confinement potential. The
effect of the attractive Coulomb potential on total en-
ergy is also depicted in Fig. 1. Binding energy linearly
increases as Ga content increases, a result attributed
to the increase in confinement potential with rising Ga
concentration. Moreover, small dot radii exhibit sharp
variations, but such linear changes gradually occur as
dot size increases. This trend is caused by the spatial
confinement of nanostructures. Thus, exciton binding
energy increases as dimensionality diminishes and ex-
citons are more stable in quantum dots than in bulk
materials.

Interband optical energy as a function of dot ra-
dius for various Ga concentrations in the strained
GaxIn1−xAs/GaAs quantum dot with and without pola-
ronic mass is shown in Fig. 2. This energy is obtained
as the sum of the band gap energy and confinement
energies of the electrons and holes minus exciton bind-
ing energy. Interband optical energy increases as dot
radius decreases for all Ga concentrations because of
the confinement of the electron and hole, as well as the
increase in Coulomb interaction between them. We de-
termine the exciton binding energy, and consequently,
the interband emission energy associated with the Γ

band with spatial confinement, allowing for a strong

nonparabolicity of the conduction band. The results
derived using the bulk (parabolic) mass of the electron
and the findings obtained when the effect of band non-
parabolicity is considered (Eq. (8)) have been presented.
A low interband emission energy is produced when the
effect of nonparabolicity is included for the all the dot
radii. This result is attributed to the large Coulomb in-
teraction energy when band nonparabolicity is included;
moreover, band nonparabolicity enhances the effective
mass of electrons[41]. Nonparabolicity more strongly in-
fluences large dots and Ga alloy content. As Ga concen-
tration increases in GaxIn1−xAs, so does barrier height.
Exciton binding energy increases with Ga concentration
in GaxIn1−xAs because of increasing barrier height. The
quantum size effect is illustrated in Fig. 2. Furthermore,
interband emission energy increases with Ga concentra-
tion, as expected from Eq. (10).

Figure 3 shows the variations in the electron (hole) g
-factor as a function of dot radius for various Ga alloy
contents in the GaxIn1−xAs/GaAs quantum dot. The
inset shows the variations in effective g-factor as a func-
tion of the band gap obtained from the bulk formula[42].
The dot radius approaches 0 and the effective electron
(hole) g-factor approaches the bulk g-factor of InAs.

Fig. 1. (Color online) Variations in exciton binding energy as
a function of dot radius in the GaxIn1−xAs/GaAs quantum
dot for various Ga contents. The inset shows the schematic
of the model used in the calculation.

Fig. 2. (Color online) Variations in interband emission energy
as a function of dot radius for various Ga concentrations in the
GaxIn1−xAs/GaAs quantum dot with and without parabolic
mass.
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Fig. 3. (Color online) Variations in electron (hole) g-factor
as a function of dot radius for various Ga alloy contents in
the GaxIn1−xAs/GaAs quantum dot. The inset shows the
variations in effective g-factor as a function of band gap.

By contrast, the g-factor approaches the bulk g-factor of
GaAs in large dots. The effective electron (hole) g-factor
increases not only with increasing dot radius, but also
with increasing Ga alloy content[43]. The magnitude of
the hole g-factor is larger than that of the electron g-
factor. No direct means of measuring the electron (hole)
g-factor in InGaAs quantum dots is currently available,
but this behavior is consistent with the trend of the bulk
g-factor. The g-factor of the conduction band in bulk
semiconductors is given by[42,44,45]

g = 2 − 2Ep∆

3Eg(Eg + ∆)
, (18)

where Eg and ∆ are the band gap energy and spin-orbit
splitting energy, respectively. EP is the Kane energy
that describes S- and P-like block functions. Equation
(18) yields poor results because strain is excluded from
the calculation. Thus, the decrease in the g-factor with
quantum dot size demonstrates the effect of geometrical
confinement.

Figure 4 shows the variations in theoretical exchange
enhancement as a function of dot radius for various
Ga concentrations in the strained GaxIn1−xAs/GaAs
quantum dot. The inset illustrates the variations in
exchange splitting as a function of dot radius in the
GaxIn1−xAs/GaAs quantum dot for various Ga alloy
contents. The exchange enhancement of J with respect
to the bulk value of the exciton in the quantum dot
is demonstrated by considering the overlap integral be-
tween the electron and hole wave function in the ex-
citon, with the inclusion of two parametric variational
parameters. Exchange enhancement monotonically in-
creases as dot radius decreases. A sudden decrease in
exchange enhancement occurs for small dot radii because
of penetration into the barrier material. Similar trends
have been previously observed for GaAs and InGaAs
quantum wells[46]. Exchange enhancement increases as
exciton confinement intensifies. The inset in Fig. 4
shows heavy-hole exchange splitting as a function of
dot radius for various Ga alloy contents in the strained
GaxIn1−xAs/GaAs quantum dot. Exchange splitting
energy increases as dot radius decreases. The energy is
more pronounced in small dots and increases with alloy

content because of the strain contribution and geomet-
rical confinement of small dots; the results qualitatively
resemble those of a previous investigation[47].

Figure 5 shows the variations in oscillator strength
as a function of dot radius for various Ga alloy con-
tents in the strained GaxIn1−xAs/GaAs quantum dot.
Oscillator strength increases with dot radius, whereas
exciton radiative lifetime decreases with dot radius. Os-
cillator strength intensifies as Ga concentration in the
InGaAs/GaAs quantum dot decreases, suggesting that
small effective masses result in large oscillator strength.
Moreover, as indicated in Eqs. (12) and (13), oscillator
strength depends purely on effective mass. Thus, oscilla-
tor strength is expected to decrease as the quantum size
effect dominates.

Figure 6 shows the variations in the total absorption
coefficient of an exciton in a spherical quantum dot with
a dot radius of 5 nm as a function of photon energy
for different values of Ga alloy content in the strained
GaxIn1−xAs/GaAs quantum dot, with I =10 MW/m2.
The inset shows the resonant absorption coefficient as a
function of Ga alloy content. The absorption coefficient
peak moves to a higher photon energy as Ga alloy con-
tent increases, suggesting that the increase in Ga con-
centration shifts resonance toward the blue region in
the quantum dot. This phenomenon is caused by the

Fig. 4. (Color online) Variations in theoretical exchange en-
hancement as a function of dot radius for various Ga con-
centrations in the strained GaxIn1−xAs/GaAs quantum dot.
The inset shows the variations in exchange splitting as a func-
tion of dot radius in the GaxIn1−xAs/GaAs quantum dot for
various Ga alloy contents.

Fig. 5. (Color online) Variations in oscillator strength as a
function of dot radius for various Ga alloy contents in the
strained GaxIn1−xAs/GaAs quantum dot.
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Fig. 6. (Color online) Variations in the total absorption
coefficient of an exciton in a spherical quantum dot with
a dot radius of 5 × 10−9 m as a function of photon en-
ergy for different values of Ga alloy contents in the strained
GaxIn1−xAs/GaAs quantum dot. The inset shows the reso-
nant absorption coefficient as a function of Ga alloy content.

increase in spacing between energy levels when Ga con-
tent is added[48]. Moreover, the application of Ga alloy
content in the InGaAs quantum dot modifies barrier
height and lattice constant, which are related to the en-
ergy gap of energy levels when the Coulomb potential be-
tween the electron and hole are considered. Furthermore,
the magnitude of the total linear absorption coefficient
shifts toward high energies (blue shift) because of the in-
corporation of Ga concentration. The transition matrix
element, electron density, and certain optical properties
depend on the geometrical shape of a quantum dot. As
shown in Fig. 6, the linear absorption coefficient is large
because of the positive linear susceptibility term; the α3

governed by the third-order nonlinear susceptibility term
is negative. Therefore, the total absorption coefficient
significantly decreases, as determined according to Eq.
(14), in which these two effects are combined. Nev-
ertheless, the contribution from the nonlinear optical
absorption coefficient should be considered under a very
strong optical intensity.

The matrix dipole moment and energy levels should
be considered when investigating oscillator strength. A
large dipole matrix element is obtained when the ener-
gies of photons are equal to the intersubband transition
energies in a system. This property is important for non-
linear optical properties, such as the index of refraction
and absorption coefficient. Optical properties are also
enhanced. Our results coincide with those of previous
investigations on the analytical forms of the changes in
absorption coefficients and related intersubband optical
transitions with incident optical intensity. The inset in
Fig. 6 shows that the resonant absorption coefficient
linearly varies as Ga alloy content increases for all the
dot radii and that the resonant absorption coefficient is
large at small dot radii. These results are attributed to
the increase in exciton binding energy when dot radius
decreases. These findings are similar to earlier experi-
mental investigations[49].

In conclusion, the heavy-hole excitonic states in a
strained GaxIn1−xAs/GaAs quantum dot for various
Ga alloy contents are discussed, with the consideration
for anisotropy, the nonparabolicity of the conduction
band, and geometrical confinement. The dependence

of the effective excitonic g-factor as a function of dot
radius on Ga alloy content is numerically calculated.
The dependence of excitonic binding energy on dot ra-
dius is elucidated. The interband matrix element for
different Ga concentrations is also computed. The oscil-
lator strength of interband transitions on the dot radius
of the InAs/GaAs quantum dot is discussed, and the
heavy-hole excitonic absorption spectra for various Ga
alloy contents in the GaxIn1−xAs/GaAs quantum dot are
recorded. We assume a single heavy-hole valence band,
in which the valence band mixing effect is disregarded.
However, the effects of valence band mixing and carrier
screening are crucial to studies on nanostructures[50−53].
The crossover between hh and lh subbands is a notewor-
thy subject for future studies, in which the performance
of semiconductor lasers and electro-optic modulators can
be improved by tailoring the valence band structure via
strain contribution.
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